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Bakkenolide-A

(+)-Bakkenolide A was prepared in five steps from ethyl 4-benzyloxyacetoacetate by sequential alkylations with tiglyl bromide and cis-5-
bromo-1,3-pentadiene, followed by an intramolecular Diels—Alder reaction as the key step. The known 7-epibakkenolide A and novel 10-epi-
and 7,10-diepibakkenolide A stereoisomers were obtained as minor byproducts.

Bakkenolide A (1) is a sesquiterpefiemethylene spiro
lactone that is structurally related to the eremophildnigs.
was first isolated from the wild butterb&etasites japonicus
by Kitahara et al?, and independently by Naya et %l.
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Bakkenolide-A (1)

Subsequent studies showed thég cytotoxic toward several
carcinoma cell linesand that it acts as an effective insect
antifeedan®. The reported biological activity and unusual

means of a radical cyclization/high-pressure intermolecular
Diels—Alder approach.Unfortunately, this resulted in poor
stereoselectivity and afforded the corresponding 6-keto
analogue that could not be reduced to the desired product.
We now report a concise new synthesis &)1 based on
an intramolecular DielsAlder reaction.

The knowng-keto este2® was sequentially alkylated with
tiglyl bromide (3 and cis-5-bromo-1,3-pentadiene {5§*
in yields of 85% and 92%, respectively, as shown in Scheme
1. The resulting pre-Diels—Alder trien@was then heated
in toluene at 190C for 24 h in a sealed reaction vessel to
effect the cycloaddition. Significantly improved yields were
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structure of bakkenolide A have prompted several previous (c) Nawrot, J.; Bloszyk, E.; Harmatha, J.; Novotny, L.; Drozdz,Agta

synthese8.We recently attempted the preparationloby
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obtained when 10 mol % of the radical inhibitor 2,6telit- benzyl group, followed by acid-catalyzed lactonization to
butyl-4-methylphenol (butylated hydroxytoluene, BHT) was afford 93% of8. Finally, the exocyclic methylene group was
included in the reaction mixture to suppress polymerization, installed via a Wittig reaction. The resulting mixture of
which was probably initiated by traces of peroxides in the sterecisomers was obtained in 62% yield and contaihed
absence of BHT. Extensive earlier investigations of intramo- 7-epibakkenolide AY), 10-epibakkenolide A1), and 7,10-
lecular Diels—Alder reactiortd have shown that transition  diepibakkenolide A (11) in the ratio of 54:19:16:11. It was
state A is generally favored over C whences-diene is separated by reverse phase preparative HPla@d product
attached to the dienophile by a three-carbon tether (Schemel was identified by comparison to an authentic sample (GC-
2). This led to the expectation that the correspondiisg MS and H and 3C NMR), while 9 had spectroscopic
fused cycloadducts would be formed preferentially.

The cycloadduc? was thus obtained in 54% yield as a
mixture of stereoisomers that could not be easily separated Scheme 2
at this stage. The unseparated mixture was therefore subjected
to simultaneous hydrogenation and hydrogenolysis of the

s
4

(>95%cis) by treatingcis-2,4-pentadien-1-ol with phosphorus tribromide. cis diene
The precursor alcohol was in turn obtained by the following method: transition state A
Margot, C.; Rizzolio, M.; Schlosser, M.etrahedron1990,46, 2411.
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—
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favored
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see: (a) Ciganek, EOrg. React.1984,32, 1. (b) Fallis, A. G.Can. J.
Chem.1984, 62, 183. (c) Taber, D. Antramolecular Diels-Alder and trans diene
Alder Ene ReactionsSpringer-Verlag: Berlin, 1984. (d) Craig, @hem. transition state B
Soc. Rev1987,16, 187. (e) Roush, W. R. IAdvances in Cycloadditign
Curran, D. P., Ed.; JAI Press: Greenwich CT, 1990; Vol. 2, p 91. (f)
Carruthers, WCycloaddition Reactions in Organic Synthedtergamon
Press: Oxford, 1990; Chapter 3. (g) Roush, W. R.damprehensie -
Organic SynthesjsTrost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon A
Press: Oxford, 1991; Vol. 5, Chapter 4.4. R’ N

(13) The ratio of stereoisomers in the product mixture was determined
by GC, and compounds, 10, and11 were obtained in a high state of "a:s’isﬁg':’:atec R
purity (>98%) by preparative HPLC. CompouBcould not be completely
separated from a small amount bf R

(14) Srikrishna, A.; Reddy, T. Jetrahedron1998,54, 11517. /
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properties consistent with those reported in the literattire.
Stereoisomerd 0*® and 11 which differ in the relative

higher yield of 95% was obtained in the subsequent cy-
cloaddition step, but the ratio of products9, 10, and11

configurations of their spiro centers, are new compounds thatwas 24:10:34:32. Thus, use of thhans-diene results in the

were fully characterized. It was possible to distinguish

preferential formation of the novélansfused diastereomers

between them on the basis of an NOE that was observedl0 and 11 via transition state D instead of B in Scheme 2.

between the angular methyl group and one of the exocyclic
methylene protons in one epimer (assigned structirg
while the other epimer (assigned structd® showed no
such effect. When the alkylation &f was repeated with
trans-5-bromo-1,3-pentadiefé,the correspondingrans-
dienyl isomer of6 was produced in 90% yield. Moreover, a
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5.03 (t,J = 2.0 Hz, 1 H), 4.77 (m, 2 H), 2.09 (dd,= 12.2, 5.8 Hz, 1 H),
1.99 (d,J = 12.8 Hz, 1 H), 1.96-1.13 (m, 10 H), 0.85 (dJ = 6.7 Hz, 3
H), 0.80 (s, 3 H); double irradiation of the signaléb.17 ppm resulted in
an enhancement of 2% of the signalba®.80 ppm;**C NMR (100 MHz)
0 149.9, 106.1, 70.5, 50.3, 49.3, 45.0, 43.1, 42.4, 30.0, 26.2, 24.5, 17.1,
13.1; mass spectrunm/z (relative intensity, %) 234 (M, 5%), 219 (4),
124 (100), 123 (56), 109 (84), 111 (81); exact mass calcd figH£530,
234.1620, found 234.1627.
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Scheme 1 therefore provides a simple five-step synthetic
approach fron? to (+)-bakkenolide A (1), which is formed
stereoselectively when thas-diene5 is employed in the
alkylation of 4. Since the opportunity exists to introduce
further modifications to the diene and dienophile components
before their incorporation into th¢-keto ester2, this
approach may also provide general access to other, more
highly substituted members of the bakkenolide family.
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